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ABSTRACT
Code optimization in the high-performance computing realm
has traditionally focused on reducing execution time. The
problem, in mathematical terms, has been expressed as a
single-objective optimization problem. The expected con-
cerns of next-generation systems, however, demand a more
detailed analysis of the interplay among execution time and
other metrics. Metrics such as power, performance, en-
ergy, and resiliency may all be targeted together and traded
against one another. We present a multi-objective formula-
tion of the code optimization problem. Our proposed frame-
work helps one explore potential tradeoffs among multiple
objectives and provides a significantly richer analysis than
can be achieved by treating additional metrics as hard con-
straints. We empirically examine a variety of metrics, archi-
tectures, and code optimization decisions and provide evi-
dence that such tradeoffs exist in practice.

1. INTRODUCTION
The race to exascale is rapidly changing supercomputer ar-
chitecture designs. Shrinking circuit sizes and a growing
push toward heterogeneous architectures is yielding systems
with processors with many cores, sometimes differing vastly
in their capabilities. From a user’s standpoint, these changes
fundamentally alter the way one interacts with these sys-
tems. System resiliency, which traditionally was “free,” will
no longer be so – lower voltage, a larger number of ele-
ments within a node, and elements’ shrinking feature sizes
is expected to decrease the mean time between failures [29].
Adding extra logic into the hardware to address the re-
siliency issue only takes up valuable chip real estate; the
burden of making sure the application ran to a success-
ful and correct completion may be shifted—at a perfor-
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mance/energy price—to the software.

Another challenge the new architecture designs expose is
the power wall problem. As an example, [29] recommends
the power wall for exascale systems at 20MW, a limit that
is already being flirted with by current-generation petaflop
systems∗. Hardware architects are consequently working
closely with application scientists to design systems that
can deliver more flops per Watt. Hardware-based solutions
alone cannot, however, address all the different stress sce-
narios that software phases might put on hardware. Part
of the solution has to come from the software side as well;
these solutions can be addressed by autotuning. Autotun-
ing can be defined as a systematic process of navigating
the space defined by the software and hardware parame-
ters that impact a metric related to the performance of the
system. Next-generation autotuning strategies should effi-
ciently identify and obtain high-performance code optimiza-
tions that can help reduce the power demands of key com-
putational pieces of the scientific applications and carefully
orchestrate hardware-provided knobs to reduce the power
draw. Exascale systems will also provide massive concur-
rency; hundreds of millions of cores are projected. Writing
an application that can take advantage of the available com-
pute resources will provide substantial challenges to today’s
high-performance computing (HPC) application developers.

Traditionally, the autotuning problem has been expressed
as a single-objective (execution time) minimization prob-
lem (see, e.g., [12]). However, given current and projected
changes in architecture designs, this formulation of the prob-
lem is insufficient for a wide variety of emerging autotuning
problems. Execution time will be one among several, pos-
sibly competing, system-related metrics (such as system re-
siliency and energy consumption) that must be optimized.
Ramping up the speed of the processor to complete the ap-
plication execution, for example, can jeopardize system re-
siliency because the increase in chip temperature can make
it more vulnerable to failures. Similarly, launching an appli-
cation to utilize more cores than its computational phases
need, or can exploit, wastes energy. Therefore, a multi-
objective formulation of the autotuning problem is needed.

Multi-objective optimization concerns the study of optimiz-
ing two or more objectives simultaneously. Even if there is
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a unique optimal (software/hardware) decision when any of
the objectives is considered in isolation, there may be an
entire set of solutions when the objectives are considered
collectively. This set is referred to as a Pareto front (for-
mally described in Section 3) and plays an integral role in
a wide variety of decision problems in HPC. Two examples
relevant to this paper are:

1. HPC administrators increasingly must balance finan-
cial costs associated with energy consumption with the
need for users to obtain results in a timely manner. In
some cases it may be possible to quantify a price on
time, and thereby obtain a single, weighted objective
comprised of both energy and time costs. However,
such a priori weights are typically unknown and min-
imizing such a single objective does not provide in-
formation when these weights (or the price of energy)
change. A Pareto front in the time-energy space pro-
vides optimal solutions for all possible weights/prices.

2. For hardware design and thermal considerations,
power capping—where one must perform a computa-
tion while satisfying a specified power limit/budget—is
increasingly done. Performance tuning in this context
could minimize the single objective of run time sub-
ject to a constraint on power. However, such a single-
objective optimization will not identify the implica-
tions associated with that particular power limit. A
1W increase in this limit could be deemed acceptable
if it allowed for a 20% reduction in time. Similarly,
a decrease in the power limit could result in a negli-
gible performance loss, and thus placing less thermal
stress on the hardware would come at minimal cost. A
Pareto front in time-power space provides valuable in-
formation on the performance consequences of setting
power limits.

Hence, multi-objective optimization studies provide signif-
icantly richer insight than do single-objective and con-
strained optimization approaches. The related work sum-
marized in Section 2 provide further examples where con-
sidering several metrics simultaneously is of interest.

In this paper, we contribute a mathematical formulation of
the multi-objective performance tuning problem. In Sec-
tion 4 we bridge the terminologies used by the mathemat-
ical optimization and performance-tuning communities for
the specific case of time, power, and energy metrics. We es-
tablish conditions when problems using these metrics benefit
from a multi-objective formulation and when the number of
objectives of interest can effectively be reduced.

To illustrate the relationship between tuning decisions and
multiple, simultaneous objectives, we consider a set of prob-
lems based on common HPC kernels. Section 5 presents de-
cision spaces consisting of different loop optimization tech-
niques (e.g., loop tiling, unrolling, scalar replacement, regis-
ter tiling), clock frequencies, and parallelization (e.g., thread
and node counts). We use these problems to conduct an
experimental study on multiple objectives on several novel
architectures. To the best of our knowledge, this is the
first detailed work on empirical analysis of run time, power,
and energy tradeoffs on an Intel Xeon Phi coprocessor (Sec-
tion 6.1), an Intel Xeon E5530 (Section 6.2), and an IBM

Blue Gene/Q (Section 6.3). Our results show that tradeoffs
exist in practice under a number of different settings.

Although current architectures only expose a limited set
of energy-/power-related parameters (e.g., CPU clock fre-
quency) to the software, we anticipate that exascale archi-
tectures may admit a richer set of hardware parameters (e.g.,
power gating of different hardware components) that have
power and energy implications. Therefore, we believe that
presenting a framework that shows how tradeoffs can be ex-
plored is an important contribution to the HPC community.
Furthermore, the existence of these tradeoffs can motivate
hardware designers to expose a richer set of knobs to fu-
ture administrators and software designers. This framework
and our analysis is sufficiently general and can be easily
extended to incorporate new hardware- and software-based
power/energy knobs as they become available.

2. RELATED WORK
Several recent works have examined metrics based on perfor-
mance and power/energy models. An energy-aware compi-
lation framework was developed in [26]. It can estimate and
optimize energy consumption of a given code taking as input
the architectural and technological parameters, energy mod-
els, and energy/performance constraints. A performance-
adaptive algorithm for optical interconnects for HPC was
proposed in [28] and used to optimize power consumption,
throughput, and latency for various traffic patterns. A
multi-objective algorithm based on game theory was pro-
posed in [7] for mapping tasks onto multi-core architectures
in order to optimize performance and energy. An integrated
architecture-circuit optimization framework was used by [11]
to study the tradeoff between energy and performance. The
authors showed that voltage scaling plays a crucial role in
this tradeoff while the choice of an optimal architecture and
circuitry does not have a significant impact. The authors
in [39] adopted machine learning techniques to build pre-
dictive models for power draw, execution time, and energy
usage of computational kernels. A “roofline” model for en-
ergy that takes into account algorithm characteristics (e.g.,
operations, concurrency, and memory traffic) and machine
characteristics (time and energy costs per operation or per
word of communication) was developed in [15]. Using this
model, the authors also analyzed the conditions for tradeoffs
between time and energy.

Objectives based on architectural simulations have also been
used. A multi-objective exploration of the mapping space of
a mesh-based network-on-chip architecture was performed
in [10]. Using evolutionary computing techniques, the au-
thors obtained the mappings on a performance-power Pareto
front. Performance, power, and resource usage objectives
were treated by the design space tool in [24] for the purpose
of exploring the vast design space of the Grid ALU Processor
and its post-link optimizer.

Closer to the present work are exploratory studies using em-
pirical performance data in conjunction with power or en-
ergy. The impact of energy constraints for multithreaded
applications on multiprocessor applications was studied in
[35] and synchronization-aware algorithms were proposed
for saving energy consumption with a user-acceptable loss
in speedup. The power monitoring devices PowerMon



and PowerMon2 were developed in [14] in order to ana-
lyze performance and power tradeoffs. The authors in [31]
used a power-aware performance prediction model of hybrid
MPI/OpenMP applications to develop a novel algorithm to
optimize energy consumption and run time. An automated
empirical tuning framework that can be configured to opti-
mize both performance and energy efficiency was proposed
in [36]. Energy and performance characteristics of different
parallel implementations of scientific applications on multi-
core systems were investigated in [32] and interactions be-
tween power and application performance were explored.
The empirical performance tuning tool ActiveHarmony was
used in [38] to explore the tradeoff between energy consump-
tion and execution time for computationally intensive ker-
nels. The effects of CPU and network bandwidth tuning
from a whole-system-level perspective were analyzed in [30].
In demonstrating opportunities for energy savings, tradeoffs
between power and run times were found.

Researchers have also begun to explore search algorithms
for multi-objective problems. In addition to execution time,
many of these works involve objectives that are simpler to
evaluate, such as code size, and none have looked at power
or energy objectives. Performance and code size were con-
sidered in a multi-objective approach in [21] when an unroll
factor was varied. A multi-objective evolutionary algorithm
was adopted in [22] to find Pareto-optimal (for combinations
of code size, compilation time, and execution time) compiler
optimization levels. Evolutionary search algorithms were
also used in the adaptive compiler framework [33] to find
compiler optimization sequences that minimize the objec-
tives code size, average run time, and worst-case run time.
Automated tuning of a just-in-time compiler through multi-
objective evolutionary search was performed in [23]. The
tuning identified optimization plans that are Pareto-optimal
in terms of compilation time and a measure of code qual-
ity. Milepost GCC [19] is a self-tuning optimization infras-
tructure that supports general multi-objective optimization
where a user can choose to minimize not only execution time
but also code size and compilation time. A multi-objective
autotuning framework that adopts differential evolution al-
gorithms as a search methodology was developed in [25].
The authors demonstrated the proposed approach by opti-
mizing run time and parallel efficiency when varying loop
tiling and thread-count parameters for parallel codes.

3. MULTI-OBJECTIVE OPTIMIZATION:
BACKGROUND AND NOTATION

We consider the multi-objective (sometimes called “multi-
criteria” [18]) mathematical optimization problem

min
x∈X

F (x) = [F1(x), . . . , Fp(x)], (1)

where p > 1 objectives are simultaneously minimized. In
this paper, we assume that the n-dimensional decision space
X ⊂ Rn is a finite collection of discrete points of size |X |.
The assumption of a discrete and finite decision space can be
relaxed. We assume that each of the p objectives is bounded
from below but can take on the extended value “+∞” (e.g.,
corresponding to an infeasible code transformation within
the space X or a—ideally, reproducible—runtime failure)
and that there is at least one point in the decision space X
at which all p objectives are finite.

Many of the standard properties from single-objective opti-
mization have analogies in the multi-objective setting. For
example, objectives f that should be maximized can be
brought into the framework (1) by defining Fi(x) = −f(x).
Similarly, the units of the component objectives Fi do not
matter since the solution set of (1) is invariant to shift and
positive-scale transformations†.

In the case of minimizing a single objective f , the idea of
(global) optimality is simple: x̂ ∈ X is optimal if and only
if f(x̂) ≤ f(x) for all x ∈ X . However, for multiple objec-
tives we must alter this notion of optimality. The following
definitions are standard in multi-objective mathematical op-
timization (see, e.g., [18]).

Definition 3.1. We say that F (x) ≤ F (y) if Fi(x) ≤
Fi(y) for all i = 1, . . . , p, and F (x) 6= F (y); in this case
we have that y is dominated by x. We say that a point
x ∈ X is Pareto optimal for (1), or non-dominated, if
there is no y ∈ X with F (y) ≤ F (x). We denote the
set of Pareto-optimal points by X ∗ ⊆ X . The set of ob-
jective function values of all Pareto-optimal points, F∗ =
{F (x) : x ∈ X ∗}, is called the Pareto front.

The concepts introduced in Definition 3.1 are perhaps best
illustrated by an example. Figure 1 (left) considers the case
when the p = 2 objectives of time, F1, and total power,
F2, are simultaneously minimized. The F1 × F2 objective
space shown is not to be confused with the decision space
X (which in this example corresponds to parameter values
defining loop unrolling and other code transformations, see
Section 5). For the examples in Figure 1, we assume that the
objective values of every feasible decision x ∈ X are shown.
The shaded area represents the region in F1×F2 space that
is dominated by the point C; all points in this region are
inferior to C in both objectives. The set of non-dominated
points form the Pareto front F∗.

If the objective F1 (F2) is minimized in isolation, then we
obtain the point A (B), which necessarily belongs on the
Pareto front. Similarly, the minimizers of the single ob-
jective fλ(x) = F1(x) + (1 − λ)F2(x), for λ ∈ [0, 1], corre-
sponding to a convex combination of the objectives, will lie
on the Pareto front. However, not all points on the Pareto
front necessarily correspond to minimizers of a linear com-
bination of the objectives (e.g., point D in Figure 1 (left)).

Hence, the Pareto front contains significantly richer infor-
mation than one obtains from single-objective formulations.
For example, if one were to minimize time subject to a con-
straint on power, F2(x) ≤ P , the Pareto front provides the
solution for all possible values of the cap P . In Figure 1
(left), we see that caps of 260W, 257W, and 254W would
result in minimal times of 6s, 6.5s, and 8s, respectively.

In some cases, the multiple objectives may not be compet-
ing. For the same decision space X considered in Figure 1
(left), Figure 1 (right) has a second objective of energy con-
sumption, which is strongly correlated with the objective F1.
In fact, the Pareto front now corresponds to a single point,
which simultaneously minimizes both objectives.

†The solution set for minx F (x) is exactly that for minx{α+
diag(β)F (x)} for any α ∈ Rp and any positive β ∈ Rp.



Figure 1: Illustration of Pareto fronts when minimizing two objectives (fdtd kernel, input size 512, Intel Xeon
E5530; see Section 6.2). Left: The points A, B, C, and D are non-dominated and hence belong to the Pareto
front. Right: The Pareto front is a single point, A, which dominates all other points.

As evidenced in these examples, only certain regions of the
objective space are of interest. Typically, search algorithms
for efficiently finding Pareto fronts focus on a hyperrectangle
defined by two points formally defined below.

Definition 3.2. The ideal objective point F I = [F I1 , . . . , F
I
p ]

for (1) is defined component-wise by F Ii = min
x∈X

Fi(x). The

nadir objective point FN = [FN1 , . . . , F
N
p ] for (1) is defined

component-wise by FNi = max
x∈X∗

Fi(x).

The ideal point represents the best possible value in each ob-
jective. The ideal point can only be attained if the Pareto
front consists of a single point as in Figure 1 (right). The
nadir point is the extreme point defined by the Pareto front.
In the example in Figure 1 (left), the ideal and nadir points
are at (5.97s, 252.5W) and (8.57s, 260.5W), respectively.
Together, the ideal and nadir point define the range of ob-
jective values that a decision maker may encounter if they
are interested in all possible optimal tradeoffs.

Before directing our focus on three specific metrics, we note
that hard constraints, including those involving an objec-
tive of interest, can also be incorporated in (1). We assume
that these constraints define the decision space X and natu-
rally the choice of this decision space can directly affect the
objective space, and hence the ideal and nadir points.

4. OPTIMIZATION OF TIME, POWER, AND
ENERGY

In this section we focus on the particular bi-objective cases
where either time and power or time and energy are si-
multaneously minimized. We could just as easily exam-
ine more than two simultaneous objectives in this analy-
sis. However, interpretation/visualization of the empirical
results presented in Section 6 would be less straightforward.
Furthermore, though our experimental focus is on objectives
defined by empirical evaluation, our framework can also in-
clude objectives defined by model or simulator evaluation.

For clarity, we will denote the time, power, and energy objec-
tives by T , P , and E, respectively. Since power corresponds
to a rate of energy, these two problems (which we can write

as F = [T, P ] and F = [T, E]) are clearly related, with
E = PT .

There are other properties of these three objectives that one
can exploit in their simultaneous optimization. For exam-
ple, T, P,E are each strictly positive, which allows us to
freely multiply/divide by T, P,E without changing inequali-
ties. Similarly, for many problems of interest one can assume
that the objective values of two different decision points are
different (i.e., for all x, y ∈ X with x 6= y, T (x) 6= T (y)).
This property would ensure that there is a one-to-one corre-
spondence between Pareto-optimal decision points X ∗ and
the Pareto front F∗.

Furthermore, we may have a priori knowledge about the re-
lationship between some decision parameters and some ob-
jectives. For example, for many architectures it is safe to
assert that power is monotonically increasing in the num-
ber of nodes employed. Such relationships can be exploited
by both exploratory studies and search algorithms to reduce
the number of distinct decision points evaluated.

Because of the relationship between power and energy, we
have a simple relationship between the two objective spaces
considered here.

Definition 4.1. Let X ∗P⊆ X denote the set of Pareto-
optimal points for F = [T, P ] and let X ∗E⊆ X denote the
set of Pareto optimal points for F = [T, E].

Proposition 4.2. All points on the energy-time Pareto
front have a corresponding point on the power-time Pareto
front: X ∗E ⊆ X ∗P .

Proof. Let x̂ ∈ X ∗E denote a point on the energy-
time Pareto front (and hence there is no point x ∈ X
that dominates x̂ for the objectives T and E). Now sup-
pose that x̂ /∈ X ∗P , and hence there is some x̃ ∈ X that
dominates x̂. If T (x̃) < T (x̂) and P (x̃) ≤ P (x̂) , then
E(x̃) = T (x̃)P (x̃) < T (x̂)P (x̂) = E(x̂) and hence x̃ is
strictly better in both T and P . On the other hand, if
T (x̃) ≤ T (x̂) and P (x̃) < P (x̂), then E(x̃) < E(x̂). In both
cases, T (x̃) ≤ T (x̂) and E(x̃) < E(x̂), which contradicts the
definition of x̂ being non-dominated for the T and E.

Proposition 4.2 says that the number of non-dominated
points for energy-time is bounded by the number of non-
dominated points for power-time.



Figure 2: Illustration of the points comprising a re-
laxed Pareto front for different values of ε (SPAPT
adi problem, Intel Xeon Phi; see Section 6.1).

Definition 4.3. Let x(1) ∈ X ∗P denote a non-dominated
point on the T -P front that minimizes time: x(1) ∈
arg minx∈X∗P T (x) (where the inclusion is done in case there
is not a unique minimizer).

Proposition 4.4. A necessary condition for x ∈ X to be
a non-dominated point on the T -E Pareto front is that

P (x) ≤ P (x(1))T (x(1))

T (x)
. (2)

Proof. By the definition of x(1), T (x(1)) ≤ T (x) for all
x ∈ X . Hence, x ∈ X can only hope to be on the T -E Pareto
front if E(x) ≤ E(x(1)), which can be rewritten as (2) since
T (x) > 0 for all x ∈ X .

Of course, many necessary bounds exist in addition to (2),
but (2) is especially convenient because it provides a con-
venient bound that requires only a minimizer of a single
objective (time). Furthermore, it offers a mathematical re-
lationship for the conditions needed in order for the energy-
time Pareto front to be comprised of more than one point.
Clearly this inequality does not hold for the example in Fig-
ure 1.

Proposition 4.4 can also be used to look at the effect of
idle power. If we decompose the power into a constant idle
power and a varying difference above idle power, P (x) =
PI + ∆P (x), then (2) is equivalent to

∆P (x(1))T (x(1))−∆P (x)T (x) ≥
(
T (x)− T (x(1))

)
PI . (3)

A necessary condition for (3) is that the power savings must
outpace the product of idle power and relative slow-down,

P (x(1))− P (x) ≥ T (x)− T (x(1))

T (x(1))
PI .

Hence, for fixed times T (x) and T (x(1)), it becomes more
unlikely that tradeoffs exist as the idle power PI grows (since
there’s always an upper bound to peak available power).

For many time-power-energy multi-objective problems, one
may need to acknowledge the measurement error in each
objective. Assuming that there is fixed error margin εi ≥ 0
for the ith objective, if Fi(x) is within εi of Fi(y), then we
cannot say that x is truly better than y (or vice versa) with
respect to the objective Fi. The notion of non-dominance

in Definition 3.1 would thus need to be modified so that x
dominates y if Fi(x) + εi ≤ Fi(y) for all i = 1, . . . , p, and
F (x) 6= F (y).

As a result, one would arrive at a relaxed Pareto front that
potentially consists of a cloud of points. This is illustrated
in Figure 2 for different multiples of the measurement error
margin (ε1 = .2s,ε2 = 2W). In practice, one often knows
what the εi should be. For example, we know what the
measurement resolution of power and time are for each of our
experiments; see the measurement descriptions in Section 6.

To simplify the presentation, we follow the convention in
Definition 3.1 (which takes εi = 0 for i = 1, . . . , p) for the
results reported in Section 6.

5. PROBLEM SETS & DECISION SPACES
We now describe the set of problems, consisting of HPC ker-
nels from SPAPT [13], TORCH [27], and CSPARSE [16],
and the proxy application miniFE [20], that we used for our
empirical multi-objective study. We also describe the code
transformation framework that we utilize to generate vari-
ants with different flavors of compiler optimizations.

We consider problems from the SPAPT suite [13]. Each
search problem in SPAPT is a specific combination of a ker-
nel, an input size, a set of tunable decision parameters, a fea-
sible set of possible parameter values, and a default/initial
configuration of these parameters for use by search algo-
rithms. These problems are implemented in an annotation-
based language that can be readily processed by Orio [34].
The tunable decision parameters are loop unroll/jamming,
cache tiling, register tiling, scalar replacement, array copy
optimization, loop vectorization, and multi-core paralleliza-
tion using OpenMP. The kernels in SPAPT are grouped into
four groups: elementary dense linear algebra kernels, dense
linear algebra solver kernels, stencil code kernels, and ele-
mentary statistical computing kernels. In this work we con-
sider problems from three of these groups: matrix-matrix
multiplication (mm), matrix transpose and vector multiplica-
tion (atax), and triangular matrix operations (trmm) from
the basic dense linear algebra kernels; bi-conjugate gradi-
ent (bicgkernel) and lu decomposition kernels from the
dense linear algebra solver kernels; and matrix subtraction,
multiplication, and division (adi), 1-D Jacobi computation
(jacobi), finite-difference time domain (fdtd), and matrix
factorization (seidel) kernels from the stencil code kernels.

To evaluate a set of points in the SPAPT decision space
(which can be further extended to include different compiler
optimization parameters), we must use a source-to-source
transformation framework. We use Orio [34], an extensible
and portable software framework for empirical performance
tuning. It takes an Orio-annotated C or Fortran implemen-
tation of a problem as input, generates multiple transformed
code variants of the annotated code, empirically evaluates
the performance of the generated codes, and has the ability
to select the best-performing code variant using some various
search algorithms. Orio annotations consist of semantic com-
ments that encode the computation. A separate tuning spec-
ification contains various parameterized performance-tuning
directives and sizes of inputs to consider. We refer the reader
to [34] for a detailed account on annotation parsing and code



generation schemes in Orio.

On multi-core architectures, larger core counts reduces the
ratio of peak memory bandwidth to peak floating-point
performance. To analyze such behavior, we include two
bandwidth-limited problems: a sparse matrix multiplication
kernel and a quick sort kernel that sorts n items inO(n log n)
time. The reference implementation of the sparse matrix
multiplication kernel is based on CSPARSE, a concise sparse
matrix package in C [16], and takes sparse matrix triplets
as input. For the quick sort kernel, we use the implemen-
tation from the TORCH Computational Reference Kernels
[27], a collection of core problems in scientific computing.
While in the sparse matrix multiplication kernel, the num-
ber of nonzero elements in the matrix lead to floating-point
operations, the quick sort kernel performs only comparisons
without any significant floating-point operations.

Finally, for large-scale multi-node experiments, we use a
proxy application from the Mantevo project, which was de-
signed to explore the capabilities of emerging architectures
[20]. miniFE is a finite element mini-application that imple-
ments kernels representative of unstructured, implicit finite-
element applications. It assembles a sparse linear system
from a steady-state heat conduction problem on a brick-
shaped domain of linear, 8-node hex elements. It then
solves the linear-system using a simple (un-preconditioned)
conjugate gradient (CG) algorithm. Thus the kernels that
miniFE contains are: computation of element-operators (dif-
fusion matrix, source vector), assembly (scattering element-
operators into sparse matrices and vectors), sparse matrix-
vector products (during the CG solve), and vector opera-
tions (level-1 BLAS: axpy, dot, norm). Running miniFE

with a fixed set of dimensions and varying the number of
MPI ranks is a commonly used strong scaling test.

6. EXPERIMENTAL RESULTS
We now summarize the findings from our empirical evalua-
tions on three markedly different platforms. The Intel Xeon
Phi’s Many Integrated Core (MIC) architecture serves as a
platform that allows us to explore the tradeoffs among con-
currency, power, and performance on nodes with many sim-
ple cores, a characteristic that we anticipate will be increas-
ingly common in next-generation large-scale systems. The
Intel Xeon E5530 architecture allows us to explore the trade-
offs among power, energy, and performance in a current-
generation architecture. The availability of clock frequency
scaling on the Xeon E5530 allows us to enrich our deci-
sion space X (see Section 3) with hardware-provided, power-
related knobs. Our measurement setup on the Xeon E5530
also provides us with more detailed power measurement ca-
pabilities. IBM’s BG/Q was chosen as a way to demonstrate
our framework’s applicability on a vastly different processor
architecture and also to explore the tradeoffs among con-
currency, power, and performance on a large, multi-nodal
scale.

6.1 Intel Xeon Phi
The experiments described in this section are carried out
on a first-generation Intel Xeon Phi coprocessor (based on
the Intel Many Integrated Core (MIC) architecture) [3], con-
sisting of 60 standard cores clocked at 1090 MHz and with
full cache coherency across all cores. Each core offers four-

Figure 3: Power, energy, and time for the fdtd
SPAPT kernel on Intel Xeon Phi (includes both
thread count and code transformation variants).

way simultaneous multithreading (SMT) and 512-bit-wide
SIMD vectors, which corresponds to 8 double-precision or
16 single-precision floating-point numbers. Each core has a
fully coherent 32KB L1 instruction cache, a 32KB L1 data
cache, and a 512KB unified L2 cache. The coprocessor card
contains 8GB of memory, and is connected via PCI Express
bus to a Westmere host running CentoOS 6.3 and with 64GB
of host main memory.

6.1.1 Setup and Measurement
For power measurement, we relied on the system manage-
ment utility micsmc (v. 4346-16) designed for monitoring
and managing Xeon Phi coprocessors. Currently, micsmc

has a time resolution of 0.5 seconds and power measure-
ment resolution of 1W. The icc compiler (version 13.0.0
20120731), with -mmic (for native MIC libraries) and -O3

optimization flags, was used to compile the code variants.

We configure each variant to run k times, where k is se-
lected (separately for each kernel) so that the total run
time is at least 50 seconds. Let r1(x), . . . , rk(x) denote
a sequence of k run times for the variant x and let
(t1(x), p1(x)), . . . , (tm(x), pm(x)) denote a time-stamped se-
quence of power measurements obtained from the micsmc

utility. To calculate power draw for the variant, we consider
all power readings (ti(x), pi(x)) with r2(x) ≤ ti(x) ≤ 50
(with r1(x) omitted to remove any cold-cache effect and the
time needed for memory allocation on the card). A 10-
second sleep interval in between two successive executions
ensures that the processor returns to a normal temperature
and power state.

6.1.2 Results



Figure 4: Power, energy, and time for the sparse
matrix multiplication kernel on Intel Xeon Phi.

Figure 5: Power, energy, and time for the quick sort
kernel on Intel Xeon Phi.

Figure 3 shows the results of obtained on the SPAPT prob-
lem fdtd (with an input size of 500 × 500). In these plots,
we show the average run time, average power, and average
energy required by the code variants. The results show a
clear tradeoff between run time and power and the number
of threads. The number of threads adopted has the largest

impact on the power draw whereas the code transformation
decisions have the largest impact on run time. We observe
that the code variants are clustered based on the number of
threads. The power draw increases by approximately 5W
with an increase of 30 threads. The corresponding energy
plot does not show a tradeoff; it exhibits a race-to-idle condi-
tion [8]. Similar trends were seen for other SPAPT problems.

When there is no activity, the coprocessor enters into a com-
plete idle state (PC-state), where it has an efficient power
management module to save power and energy by power
gating [4]. Currently, the power draw we observe is approxi-
mately 60W. However, after transitioning from an idle state
to the normal operating state, we observe high idle power
(currently between 80W and 90W). Consequently, even a
small run time reduction results in significant energy sav-
ings. We note that some previous works (e.g., [37, 9]) sub-
tract idle power from the power drawn during the normal
operating state in order to only consider the increase in the
power draw that can be attributed to a given workload’s ex-
ecution. Our figures show the view from a system operator’s
perspective, and take into account the total system power
(idle and workload computation power).

Next we focus on the sparse matrix multiplication kernel
with the input trdheim, a large, sparse matrix from the
UFL sparse matrix collection [17] with 1,935,324 nonzeros.
Other inputs tested (including std1_Jac3_db, biplane-9,
and t3dl from [17]), produced similar results. We study the
impact of varying the number of threads (concurrency) on
run time, power, and energy. Figure 4 shows the Pareto
front. Although there is a tradeoff between run time and
power, we can observe race-to-idle behavior when it comes
to energy efficiency. This can be due to a number of architec-
tural specializations of the Intel Xeon Phi to improve band-
width [3]. The aggregate bandwidth of L1 and L2 caches
are approximately 15 and 7 times faster than the aggre-
gate memory bandwidth, respectively. A 16-stream hard-
ware prefetcher is used to improve the cache hits. It uses a
special instruction called “streaming store” that allows the
cores to write an entire cache line without reading it first.
The interconnect has a 64-byte wide data block ring to sup-
port the high bandwidth requirement. Finally, the memory
controllers are symmetrically interleaved around the ring to
provide a uniform access pattern, which eventually increases
the bandwidth response.

Figure 5 shows the results of the quick sort kernel on an
input size (the number of random integers to sort) of 107.
We see a similar trend except that the variants with larger
thread counts are slightly slower and thus less energy effi-
cient.

The results from Intel Xeon Phi show that for compute-
limited kernels, the use of large core counts results in signif-
icant performance benefits with respect to both time and en-
ergy. Nevertheless, power is a limiting factor. Due to the ef-
fective high-bandwidth memory subsystem, the bandwidth-
limited kernels also exhibit a similar trend. It is interesting
to note that, in all our Intel Xeon Phi experiments, we ob-
serve that the maximum power is between 140W and 145W,
irrespective of the type of kernel tested. The average power
draw is determined by the number of threads used rather



than the type of computations. This observation under-
scores the importance of developing workload-aware paral-
lelism schemes for the next-generation systems with many
cores, so that one uses only the number of cores (or threads)
that the workload can actually exploit.

6.2 Intel Xeon E5530
We now describe our results on an Intel Xeon E5530 work-
station with two quad-core processors. Each core has its own
32KB L1 cache and 256KB L2 cache; each of the quad-core
processors has a shared 8MB L3 cache (for a total of 16MB
of L3 for the 8 cores). The processors can be clocked at 1.60,
1.73, 1.86, 2.00, 2.13, 2.26, or 2.39 GHz. Processor clock fre-
quency is changed using the cpufreq-utils package [1] that
is available with many popular Linux distributions.

6.2.1 Setup and Measurement
Component-level (CPUs and DIMMs) power measurements
are collected using a PowerMon2 apparatus [14]. Power-
Mon2 is a hardware and software framework designed to
obtain fine-grained (up to 1024 samples per second) current
and voltage measurements for different components of a tar-
get system (e.g., CPUs, memory subsystem, disks, GPUs).
We measure the system-level power draw using the WattsUp
Pro power meter [6]. The power meter is a fairly inexpen-
sive device, costing less than $150 at the time of this writ-
ing. Although the device is easy to use, it provides relatively
coarse-grained measurements, roughly one reading per sec-
ond. We implemented a command-line interface on top of
the WattsUp driver to monitor and calculate the overall en-
ergy usage of an application.

Since we can only measure system level power at 1-second
granularity, we configure the main computational loops to
run k times, where k is selected (separately for each ker-
nel/input) so that the total run time at the highest CPU
frequency is more than five seconds. This ensures that we
collect a sufficient number of power readings that can be
attributed to the main computation of the kernels. The ex-
ecution time reported in the paper is for these k iterations
of the computation kernel. A post-processing step sweeps
through the data to attribute portions of the power mea-
surements to the actual kernel loops. These power measure-
ments are then averaged to determine the power draw for
a single execution. To account for the unavoidable noise in
this empirical data collection process, we measure each vari-
ant three times. The execution time and the power draw
reported here are averages of these three runs.

Here we discuss results for the fdtd, jacobi, and bicgkernel

SPAPT kernels. However, for fdtd, we selected two different
input sizes: 512 × 512 (henceforth referenced as fdtd512)
and 4096 × 4096 (fdtd4096). The selection decision was
driven by our desire to ensure that we have test cases that
stress the CPU and memory subsystem in different ways. In-
deed, the last level cache misses per instruction for the base
SPAPT case (no transformations) ranges from 1.8 × 10−4

for bicgkernel (making it a very compute-bound kernel) to
0.03 for fdtd4096 (making it a memory-bound kernel).

The code transformations applied to the kernels and the
transformation spaces are taken as in [13]. However, we
supplement the SPAPT decision spaces with a CPU clock

Figure 8: Pareto fronts (for each clock frequency) on
Intel Xeon E5530 for component-level power draws.

frequency parameter. For each of the kernels, we select 300
(a number chosen simply to limit the time required for data
collection while being relatively representative of the large
SPAPT transformation spaces) randomly selected variants
from the code transformation space. Each of these variants
are evaluated on all available clock frequencies.

6.2.2 Results
Figure 6 shows the Pareto fronts for the objectives time and
total system power (as measured at the wall). The first
observation that demonstrates the richness of the decision
space is that, for a given hardware frequency parameter, the
power range for the code variants is rather large. Tradeoffs
between time and system-level power draw are evident. The
power draw is lower for slower clock speeds, but this comes
with a slow-down of the computation. Especially interesting
is that the Pareto fronts show that there are cases where one
can reduce the power draw and not impact the performance
substantially. Such results/behavior should be of high inter-
est to co-design centers designing power-limited hardware
targeted to specific types of computations.

We can also examine particular transformation variants.
Figure 7 shows the energy and time for the five highest-
performing (as measured at the fastest clock rate) variants.
This figure shows some interesting tradeoff decisions that
we can explore. For example, for variant v1 of the memory-
bound fdtd4096 kernel, we see that we can trade 0.8% loss in
performance with 7.5% decrease in the energy consumption
by running the kernel at the lowest frequency. The energy
savings amount is not as significant for the compute-bound
bicgkernel, where one can trade 1.2% loss in performance
with 2.8% decrease in the energy consumption by running
variant v1 at clock frequency 2.12GHz.

Figure 8 shows the Pareto fronts for each clock frequency for
component-level power draws of the fdtd4096 kernel. When
we analyze each of the fronts for different clock frequencies
in isolation, we see a clear tradeoff between DIMM and CPU
power draws for different code variants. We attribute this
behavior intuitively to the optimizations that impact data
motion. Code variants that have better data motion behav-
ior reduce the stress on DIMMs thereby lowering the DIMM
power. At the same time, better data motion leads to more
compute work for the CPU, thereby raising its power de-



Figure 6: Pareto fronts (for each clock frequency) for SPAPT kernels on Intel Xeon E5530 for the objectives
time and total system power. The shaded area shows the Pareto front across all frequencies.

Figure 7: Energy and time on Intel Xeon E5530 for the five highest-performing variants (v1–v5) from the
SPAPT transformation space. The curves illustrate the tradeoff behavior as clock frequency is changed.



mand. Such tradeoffs are of interest in studies for future ar-
chitectures where one may consider constraining CPU draw
(e.g., for thermal/fault considerations) and/or DIMM draw
(e.g., as a proxy for effective memory footprint or simulator
of memory-starved systems).

6.3 Vesta IBM Blue Gene/Q
Vesta is a developmental platform for Mira, a 10-petaflop
IBM Blue Gene/Q supercomputer [2] at Argonne. Vesta’s
architecture is the same as Mira’s except that it has two
compute racks (compared to the Mira’s 48 racks). A rack
has 32 node boards, each of which holds 32 compute cards.
Each compute card comprises 16 compute cores of 1600 MHz
PowerPC A2 processors with 16GB RAM (1GB/core). In
total, Vesta has 2,048 nodes (32,768 compute cores). The
nodes are connected via a proprietary 5-D torus network.
The compute nodes are water-cooled for thermal efficiency
and run on CNK, a proprietary, lightweight kernel that min-
imizes OS noise.

6.3.1 Setup and Measurement
For the power measurements in BG/Q, we use a power pro-
filing code that periodically samples power draw [40]. Due
to cabling and control system limitations, the code requires
a minimum partition size of 128 nodes, which spans 4 node
boards. The profiler code runs one thread on each node
board and records the power on all the domains every 0.25
seconds along with a time stamp. We refer the reader to [40]
for further details on the power profiling in BG/Q.

We set the input size (controlling the box domain from which
a finite-element problem is assembled and solved) of miniFE
to nx = ny = nz = 1000. We considered a decision space
with four parameters: two generic parameters that control
the scaling behavior and two application-specific parame-
ters. The generic parameters are the number of nodes ({128,
256, 512, 1024}) and the number of threads per core (either
8 (one thread every other core) or 16 (one thread per core)).
The two miniFE specific parameters are the percentage of
unbalance in the decomposition ({5, 10, 20, 30, 40, 50, 60,
70, 80, 90}) and a boolean decision parameter ({Yes, No})
that controls whether matrix-vector products are performed
with overlapping communication and computation. In total,
we had 160 code variants for the experimental analysis.

6.3.2 Results
The results in Figure 9 show that there are tradeoffs between
time to completion and both power and energy. As expected,
increasing the node count decreases the time to completion
but increases the power draw. In addition to the workload
power, the significant increase in the power draw can be
attributed to the fact that each node board consumes an
idle power of ≈1500W [40]. The node count of 1024 uses 32
node boards but 128 uses only 4 node boards. Concerning
energy, the best parameter configuration within each node
count provides a tradeoff between time to completion and
energy consumption. However, within a given node count,
the fastest code variant consumes the least energy.

7. CONCLUSIONS AND OUTLOOK
In this paper we have provided a formalism for multi-
objective optimization studies of broad applicability in auto-

Figure 9: Power, energy, and time for miniFE on
BG/Q.

tuning, architecture design, and other areas of HPC. With
a focus on time, power, and energy, we illustrated that a
multi-objective analysis provides richer insight than do con-
strained and single-objective formulations. We have also
contributed a significant empirical study, spanning a diverse
set of platforms, power measurement technologies, kernels,
and decision spaces. Our findings showed that in some set-
tings objectives are strictly correlated and there is a single,
“ideal” decision point; in others, significant tradeoffs exist.

For exhaustive evaluation of a decision space, multi-
objective analysis is straightforward, since it requires only
that the multiple objectives be recorded. However, for more
targeted processes (such as when searching for decisions on
the Pareto front), the analysis can be more expensive than
single-objective analysis.

Future work includes characterizing settings where empiri-
cal tradeoffs agree with those predicted by models (e.g., the
roofline work in [15]) and where relationships between ob-
jectives are not as well understood. There are significant
opportunities for studying the tradeoffs among additional
objectives; we especially mention resiliency since its relation-
ship to power-/temperature-based objectives is expected to
be a prime concern in future extreme-scale systems [29].
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